

Ryan M. Coyle, MD Sept. 29, 2022

855-UOA-DOCS **UOANJ.com**

• I have no disclosures relevant to this presentation

 What is the optimal evidence-based management of both the acute and chronic AC joint injury?

Epidemiology

- Most commonly affect young males
 - Athletes particularly at risk
- Fall directly onto shoulder, less frequently FOOSH
- Low-energy injuries (Type 1-3) far more common than high-energy injuries

- Acromioclavicular joint:
 - Plane/gliding joint stabilized by:
 - Acromioclavicular ligaments
 - Coracoclavicular ligaments
 - Conoid/Trapezoid ligaments

- Acromioclavicular joint:
 - Plane/gliding joint stabilized by:
 - Acromioclavicular ligaments
 - Thickenings of joint capsule, responsible for A-P stability
 - Coracoclavicular ligaments
 - Conoid/Trapezoid ligaments

- Acromioclavicular joint:
 - Plane/gliding joint stabilized by:
 - Acromioclavicular ligaments
 - Thickenings of joint capsule, responsible for A-P stability
 - Coracoclavicular ligaments
 - Conoid/Trapezoid ligaments
 - Responsible for superoinferior constraint

- Acromioclavicular joint:
 - Plane/gliding joint stabilized by:
 - Acromioclavicular ligaments
 - Thickenings of joint capsule, responsible for A-P stability
 - Coracoclavicular ligaments
 - Conoid/Trapezoid ligaments
 - Responsible for superoinferior constraint
 - Conoid ~ 4.5 cm medial to distal clavicle, posterior
 - Trapezoid ~ 2.5-3 cm medial to distal clavicle, anterior

Ligamentous and capsular restraints to anteriorposterior and superior-inferior laxity of the acromioclavicular joint: a biomechanical study

Jillian Lee, BHB, MBChB, FRCS(Orth)^a,*, Hadi El-Daou, PhD^b, Mohamed Alkoheji, MB BCh, FRCS(Tr&Ort)^a, Adrian Carlos, MBChB, MSc(SurgSci), FRCS(Tr&Ort)^a, Livio Di Mascio, MB BS, FRCS(Tr&Orth)^a, Andrew Amis, DSc, FREng^b

- Cadaveric study (20 specimens)
- Sequential sectioning of ligaments
- Conoid ligament most important for superior restraint
- AC capsule most important to resist inferior, posterior translation

J Shoulder Elbow Surg (2021) 30, 1251-1256

Figure 1 Dissected specimen. *Cor*, coracoid; *CA*, coracoacromial ligament; *AC*, acromioclavicular joint capsule; *Con*, conoid ligament; *Tr*, trapezoid ligament.

Deforming forces

- Trapezius, SCM elevate clavicle, exert posteriordirected traction
- Scapula follows the upper extremity with weight of arm

Table 2

Summary of the Rockwood Classification System for AC Joint Injuries

	AC Ligament	CC Ligament			
Туре	Injury	Injury	Deltotrapezial Fascia	Clinical Findings	Radiographic Findings
I.	Intact	Intact	Intact	AC tendemess; no obvicus visible deformity	Normal
Ш	Ruptured	Incomplete injury	Mild injury	Pain with motion, clavicle unstable in the horizontal plane possibly displaced A/ P	Lateral end of the clavicle slightly elevated. Stress views approximately 25% separation
Ш	Ruptured	Ruptured	Mild to moderate injury	Clavicle unstable in both horizontal and vertical planes, extremity adducted, and acromion depressed relative to the clavicle	Plain radiographs and stress radiographs abnormal— 25%-100% separation. In reality, the acromion and upper extremity are displaced inferior to the lateral clavicle
				Clavicle appears "high- riding"	
IV	Ruptured	Ruptured	Injured as the clavicle is posteriorly displaced	Possible skin tenting and posterior fullness; AC joint irreducible on PE	Clavicle displaced posteriorly on axillary view, possibly penetrating the trapezius muscle
v	Ruptured	Ruptured	Injured and stripped off clavicle	More severe vertical incongruity than III injury, shoulder with severe droop; if shoulder shrug does not reduce, then type V injury	100% to 300% increase in the clavicle-to-acromion distance
VI	Ruptured	Mild injury, usually intact	Possible injury	Rare inferior dislocation of the distal clavicle for high- energy hyperabduction, ER injury; accompanied by other severe injuries; transient paresthesias; always evaluate for peurovascular injury	Clavicle lodged behind the intact conjoined tendon

Review Article

Acromioclavicular Joint Injuries: Evidence-based Treatment

Rachel M. Fran Eric J. Cotter, M Timothy S. Lero Anthony A. Ro	ık, MD MD oux, MD meo, MD	J Am Acad Orthop 5 e775-e788	Surg 2019;27:
Ligament stretched	Partial rupto A.C. ligame	are Comp A.C.	plete rupture and C.C. ligaments
Clavicle displaced posterior Over acromion	Clas	vicle displaced	Clavicle underneath Coracoid (very rare!)

Examination

- Tenderness over ACJ
- Pain with cross-body adduction
- Pain with O'Brien active compression test localized to ACJ

Examination

• Does the distal clavicle reduce when the patient shrugs? (fires trapezius)

© www.cpdo.com.au

Examination

- Radiographs typically demonstrate/confirm diagnosis
 - Specialized views:
 - Zanca (10-15 degree cephalad tilt)
 - Axillary view to demonstrate A-P translation

• How severe is the injury?

- How severe is the injury?
 - Type 1-2 \rightarrow conservative treatment
 - Type 4-6 \rightarrow typically operative

How severe is the injury?
Type 1-2 → conservative treatment
Type 4-6 → typically operative
What are the patient's demands?

- How severe is the injury?
 - Type 1-2 \rightarrow conservative treatment
 - Type 4-6 \rightarrow typically operative
- What are the patient's demands?
 - Overhead athlete? In season? Dominant arm?

- How severe is the injury?
 - Type 1-2 \rightarrow conservative treatment
 - Type 4-6 \rightarrow typically operative
- What are the patient's demands?
 - Overhead athlete? In season? Dominant arm?
- Acute or chronic injury?

- How severe is the injury?
 - Type 1-2 \rightarrow conservative treatment
 - Type 4-6 \rightarrow typically operative
- What are the patient's demands?
 - Overhead athlete? In season? Dominant arm?
- Acute or chronic injury?
 - Has the patient had previous treatment?

Daniël E. Verstift,*[†] MD, Iris D. Kilsdonk,[‡] MD, PhD, Marieke F. van Wier,[†] PhD, Robert Haverlag,[§] MD, and Michel P.J. van den Bekerom,[†] MD, PhD *Investigation performed at OLVG Hospital, Amsterdam, the Netherlands*

- 75 patients (80% male), median 7 yr follow-up
- 50% type 1, 50% type 2 injury

The American Journal of Sports Medicine 2021;49(3):757–763 DOI: 10.1177/0363546520981993 © 2021 The Author(s)

Daniël E. Verstift,^{*†} MD, Iris D. Kilsdonk,[‡] MD, PhD, Marieke F. van Wier,[†] PhD, Robert Haverlag,[§] MD, and Michel P.J. van den Bekerom,[†] MD, PhD Investigation performed at OLVG Hospital, Amsterdam, the Netherlands

 Clinically non-relevant differences in Constant score and DASH score at final follow-up, slightly worse on injured side

The American Journal of Sports Medicine 2021;49(3):757–763 DOI: 10.1177/0363546520981993 © 2021 The Author(s)

Daniël E. Verstift,*[†] MD, Iris D. Kilsdonk,[‡] MD, PhD, Marieke F. van Wier,[†] PhD, Robert Haverlag,[§] MD, and Michel P.J. van den Bekerom,[†] MD, PhD Investigation performed at OLVG Hospital, Amsterdam, the Netherlands The American Journal of Sports Medicine 2021;49(3):757–763 DOI: 10.1177/0363546520981993 © 2021 The Author(s)

	ТАР	IFF						
	TAB							
	Outcomes at Follow-up ^{a}							
	Total Rockwood I AC Joint Injuries Rockwood II AC Joint Injuri							
Patients	75	38	37					
DASH	4.2 (0.0-10.8)	4.2 (0.0-7.5)	5.8 (0.4-15.0)					
SST	100 (91.7-100.0)	100 (91.7-100.0)	100 (87.5-100.0)					
AC joint pressure pain at injured shoulder	12 (16)	6 (16)	6 (16)					
Positive cross-arm adduction test								
Injured shoulder	12 (16)	8 (21)	4 (11)					
Contralateral shoulder	2(3)	1 (3)	1 (3)					
Patient satisfaction	83 (70.0-95.0)	80 (70.8-96.0)	85 (69.0-95.5)					
Subsequent surgery	2(3)	2(5)	0 (0)					
Sports								
Preinjury	65 (87)	33 (87)	32 (87)					
Postinjury	50 (67)	30 (79)	20 (54)					
Symptoms during sports ^b	13/50 (26)	8/30 (27)	5/20 (25)					
Shoulder symptoms as reason for not participating in sports^c	3/25 (12)	0/8 (0)	3/17 (18)					

Daniël E. Verstift,*[†] MD, Iris D. Kilsdonk,[‡] MD, PhD, Marieke F. van Wier,[†] PhD, Robert Haverlag,[§] MD, and Michel P.J. van den Bekerom,[†] MD, PhD Investigation performed at OLVG Hospital, Amsterdam, the Netherlands

Radiologic Outcomes for Rockwood I and II AC Joint Injuries ^a								
	Rockwood I (n = 37)				Rockwood II (n = 35)			
	Injured Shoulder	Contralateral Shoulder	P Value	MD (95% CI)	Injured Shoulder	Contralateral Shoulder	P Value	MD (95% CI)
AC displacement, ^b mm	8.5 ± 3.5	8.2 ± 3.0	$.499^{c}$	0.3 (-0.5 to 1.2)	10.7 ± 4.9	7.8 ± 2.5	$.004^c$	2.9 (1.5 to 4.4
AC joint space, ^d mm	9.8 ± 4.5	7.9 ± 2.3	$.036^{c}$	1.9 (0.5 to 3.5)	10.4 ± 3.4	7.8 ± 2.2	$< .001^{c}$	2.7 (1.4 to 3.9
Degenerative changes, grade ^e	16 (43)	16 (43)	$.511^{f}$		16 (46)	17 (49)	.864 ^f	
Ι	11 (30)	7 (19)			11 (31)	10 (29)		
II	4 (11)	7 (19)			4 (11)	6(17)		
III	1 (3)	2(5)			1 (3)	1 (3)		
IV	0 (0)	0 (0)			0 (0)	0 (0)		
Osteolysis of distal clavicle	9 (24)	0 (0)	$<.001^{f}$		13 (37)	0 (0)	$<.001^{f}$	
Ossification of the ligaments	8 (22)	2(5)	$< .001^{f}$		13(37)	3 (9)	$< .001^{f}$	
Deformity of distal clavicle	7 (19)	0 (0)	$<.001^{f}$		7 (20)	0 (0)	$< .001^{f}$	

TABLE 6

The American Journal of Sports Medicine 2021;49(3):757–763 DOI: 10.1177/0363546520981993 © 2021 The Author(s)

UOA

Comparison of surgical and conservative treatment of Rockwood type-III acromioclavicular dislocation

A meta-analysis

Guolong Tang, MD^a, Yu Zhang, MD^a, Yuan Liu, MD^b, Xiaodong Qin, MD^a, Jun Hu, MD^{a,*}, Xiang Li, MD^a

- 10 studies, 649 patients
- 2-20 year followup

Table 2

Results of the meta-analysis.

				Heterogeneity		
Outcome	Studies	Effect size	Р	<i>I</i> ² , %	χ ² (P)	
Pain	6	0.89 [0.47, 1.67]	.71	0	3.64 (.60)	
Weakness	2	1.00 [0.34, 2.91]	1.00	0	0.12 (.72)	
Tenderness	2	0.92 [0.18, 4.75]	.92	9	1.10 (.29)	
Loss of anatomical reduction	3	0.07 [0.04, 0.13]	<.00001*	0	1.96 (.38)	
Post-traumatic arthritis	6	0.80 [0.18, 3.64]	.77	79	23.98 (.0002*)	
Coracoclavicular ligaments ossification	6	1.62 [1.01, 2.61]	.05	5	5.27 (.38)	
Osteolysis of the lateral clavicle	5	2.87 [1.27, 6.52]	.01*	44	7.18 (.13)	
Restriction of strength	2	1.00 [0.34, 2.89]	1.00	0	0.12 (.73)	
Unsatisfactory function (only "poor" or "fair" category)	5	0.74 [0.34, 1.60]	.44	38	6.48 (.17)	
Constant score	4	0.00 [-1.47, 1.47]	1.00	41	5.07 (.17)	
UCLA score	2	-0.28 [-2.54, 1.99]	.81	57	2.35 (.13)	
Imatani score	1	-0.40 [-8.28, 7.48]	.92	NA	NA	
SST score	2	-0.27 [-3.61, 3.06]	.87	92	12.67 (.0004*)	
DASH score	1	-0.02 [-5.65, 5.61]	.99	NA	NA	
Larsen score	1	0.00 [-0.72, 0.72]	1.00	NA	NA	
ACJI score	1	15.50 [14.44, 16.56]	<.00001*	NA	NA	

• Essentially no clinical outcomes differences

No difference in clinical outcome at 2-year follow-up in patients with type III and V acromioclavicular joint dislocation treated with hook plate or physiotherapy: a randomized controlled trial Journal of Shoulder and Elbow Surgery

J Shoulder Elbow Surg (2022) 31, 1122-1136

- 121 patients (61 type 3, 60 type 5) randomized to hook plate fixation or PT
 - Nonop tx: 2 weeks in sling, 6 weeks total NWB
 - 61 randomized to nonop, 60 op
- Mean age: 40
- 92% male
- 11/60 patients crossed over from non-operative to operative arm

No difference in clinical outcome at 2-year follow-up in patients with type III and V acromioclavicular joint dislocation treated with hook plate or physiotherapy: a randomized controlled trial

Journal of Shoulder and Elbow Surgery

J Shoulder Elbow Surg (2022) 31, 1122-1136

Table III Average Constant scores, measuring clinical function, at different time points								
Time point	Rockwood type III		Rockwood type V		P value*			
	Nonoperative	Operative	Nonoperative	Operative				
Before injury	89.2 (4.7)	90.2 (4.3)	90.5 (4.1)	89.4 (5.8)	.682			
3 mo	80.2 (13.3)	57.1 (17.4)	84.1 (11.2)	64.0 (17.9)	$<$.001 †			
6 mo	83.2 (12.6)	83.9 (11.8)	88.9 (8.6)	85.1 (7.8)	.158			
12 mo	85.7 (10.5)	86.6 (13.3)	90.6 (8.8)	89.6 (6.4)	.188			
24 mo	88.1 (11.1)	91.1 (5.9)	90.0 (10.0)	91.0 (5.0)	.477			

The Constant score ranges from 0 to 100, in which 100 is the best possible result. Standard deviations are shown in parentheses.

* One-way analysis of variance.

Significant difference between nonoperative and operative patients (Tukey honestly significant difference test).

Which patients fail conservative tx?

- Emerging consensus in literature does not show an advantage to operative treatment
- Still a question: which patients will not do well with nonoperative treatment?

Management of chronic unstable acromioclavicular joint injuries

J Orthop Traumatol (2017) 18:305–318 DOI 10.1007/s10195-017-0452-0

Luis Natera Cisneros^{1,2}^(D) · Juan Sarasquete Reiriz^{1,3}

- Acute vs. chronic traditionally defined as 3 weeks post-injury
- Trend in literature of better outcomes with acute surgery

Management of chronic unstable acromioclavicular joint injuries

Luis Natera Cisneros^{1,2}^(D) Juan Sarasquete Reiriz^{1,3}

Table 1 Management in the chronic setting versus management in the acute setting							
Study	n	Type of treatment	Mean follow-up	Results			
Weinstein et al. [6]	44	Modified Weaver–Dunn technique in 15/27 acute cases, and in 14/17 chronic cases. The rest of the repairs were performed by means of AC non- absorbable sutures	4 years (range 2–9)	Satisfactory results in 96% of acute cases and 76% of chronic cases. The differences were statistically significant in favor of acute cases			
Rolf et al. [11]	49	29 patients using the modified Phemister technique versus a group of patients who underwent surgery after failure of conservative treatment (20 modified Weaver–Dunn)	53 months (range 20-92)	The results were significantly superior in the group of patients managed in the acute phase			
von Heideken et al. [12]	37	22 patients treated in the acute phase versus 15 patients treated in the chronic phase. Hook plate in all cases	22 acute patients were re-evaluated at average of 38 months (range 15–96 months) after surgery, and 15 chronic patients were re-evaluated at an average of 36 months (range 18–62) after surgery	The results significantly favored both the clinical and radiological aspects, to the group of patients treated in the acute phase			
Mignani et al. [13]	40	25 patients in the acute phase versus 15 patients in the chronic phase. In both groups the management consisted of AC and CC temporary fixations with K-wires	Unknown	Satisfactory results in 100% of patients in the acute group and 93% of patients in the chronic group. No statistically significant differences			
Dumontier et al. [14]	56	32 patients in the acute phase versus 24 patients in the chronic phase. All patients were treated by means of CA ligament transposition	Acute group (mean follow-up 46 months) and chronic group (mean follow-up 51 months)	The results were satisfactory in 81% of patients treated in the acute phase and in 79% of patients treated in the chronic phase, with no significant differences			

J Orthop Traumatol (2017) 18:305–318 DOI 10.1007/s10195-017-0452-0

UOA

Many surgical techniques described in the literature

- Weaver-Dunn procedure
 - Transfer of CA ligament to distal clavicle with or without supplementary fixation

- Internal fixation
 - Hook plate
 - Suture button
 - Screw

Anatomic CC/AC reconstruct

Anatomic reconstruction of the acromioclavicular joint provides the best functional outcomes in the treatment of chronic instability

Giuseppe Sircana¹ · Maristella F. Saccomanno¹ · Fabrizio Mocini¹ · Vincenzo Campana¹ · Piermarco Messinese¹ · Andrea Monteleone¹ · Andrea Salvi² · Alessandra Scaini² · Almerico Megaro³ · Giuseppe Milano^{2,3}

- Systematic review of 44 studies
- Trend toward:
 - Synthetic reconstruction (artificial ligaments) vs graft/internal fixation
 - Fewer complications
 - Improved ASES/Constant scores
 - Augmentation of auto/allograft
 - Arthroscopic assisted procedure
 - CC+AC recon vs. CC recon
 - No clinically significant differences

Surgical Technique-LockDown

Knee Surgery, Sports Traumatology, Arthroscopy (2021) 29:2237–2248 https://doi.org/10.1007/s00167-020-06059-5

Future Directions of Research

- Which patients are at risk of failure of conservative tx?
- How to decide whether to recommend early intervention?
- Is there a dominant surgical intervention?

A Division of OrthoNJ

Thank You!

