Rehabilitation Considerations for Shoulder Instability

Ryan P. Kay, PT, DPT Assistant Director of Physical Therapy Center for Rehabilitation and Sports Excellence

Life In Motion

www.UOANJ.com | 1-855-UOA-DOCS

Disclosure

• I have no financial interest or relationships to disclose.

Clinical Question?

 How many participants feel comfortable treating shoulder instability, whether acute or chronic?

Shoulder Instability

- Encompasses a spectrum of disease from subluxation to dislocation
 - Typically associated with collision athletes
 - Presentation can be subtle, and difficult to diagnose in the absence of an acute trauma (DeFroda, et al.)
- Instability can also be a result of repetitive microtrauma
 - Seen in overhead athletes: Baseball, Tennis, Volleyball, Swimming

Prevalence of Shoulder Instability

- Owens et al. reported that subluxations can comprise up to 85% of instability events with overhead athletes
- The Glenohumeral joint is the most commonly dislocated diarthrodial joint in the body
 - Maintenance of GH joint stability is a complex interplay between static and dynamic factors (R. Ma et al.)
- Edourd et al. reported deficits in IR and ER strength results in imbalances of the forces were associated with recurrent anterior shoulder instability

Baseball

- Reinold et al. found a 5 degree increase in shoulder ER in professional baseball players at the end of the season compared to the beginning of the season
 - Progressive loss of IR and an increase in ER can cause attenuation of anterior capsular tissue
 - Leads to micro-instability

Tennis

- Ladermann et al. recruited 10 asymptomatic professional tennis players
 - Evaluated for internal and external impingement as well as GH joint instability
 - Labral tears were evident in 5 athletes
 - Four athletes found to have anterior and lateral subacromial impingement during late cocking phase of their serve

Volleyball

- Different kinematics than throwing; however involves overhead activity
 - Stretching GH joint beyond physiologic limits.
 - Higher prevalence of multi-directional instability (MDI)
- Repetitive micro trauma from OH hitting can lead to inferior capsular laxity and possible HAGL lesion.

Swimming

- Stein et al. hypothesized training volume correlated with injury rates
 - Surveyed 80 elite swimmers ages 13-25 years
 - 91% reported some type of shoulder pain
 - 84% had positive impingement signs on clinical examination
 - 69% had supraspinatus tendinopathy on MRI

Rehabilitation Considerations

- Shoulder instability isn't going to go away
- 2022 Bern Consensus Statement:
 - Scapular dyskinesis is present in 53% of healthy people and 61% of overhead athletes
 - CKC versus OKC exercises which is superior for these athletes?
 - Applying injury prevention principles in practice
 - Identifying individual demands of the sport

CKC versus OKC?

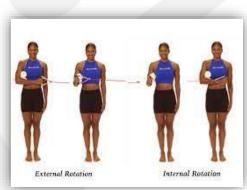
- CKC: Closed chain positions not as commonly found in sports
 - Except wrestling or football OL/DL
- Safe place to begin for athletes with instability may be with low load CKC
- Important for facilitating proprioceptive feedback mechanisms, muscle cocontraction, and dynamic joint stability

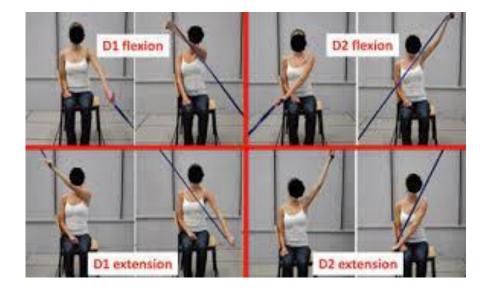
- OKC: More common in a sport for the hand/extremity to move freely in space with various loads
- End-stage OKC exercises should be guided by the movements and demands of the sport
- Proprioceptive Neuromuscular Facilitation (PNF): Proximal stability for distal mobility

Proprioceptive Training

- Shown to improve neuromuscular control in individuals with shoulder instability
- Allows musculoskeletal system to provide feedback to central nervous system, optimizing stability and function
- Enhances cognitive awareness of position and motion

Upper Extremity Stability Exercises




Upper Extremity Strengthening

Escamilla et al.

Table I. Mean $(\pm$ SD) tubing force and glenohumeral electromyograph (EMG), normalized by a maximum voluntary isometric contraction (MVIC), during shoulder exercises using elastic tubing and bodyweight resistance, with intensity for each exercise normalized by a ten-repetition maximum. Data for muscles with EMG amplitude >45% of a MVIC are set in bold italic type, and these exercises are considered to be an effective challenge for that muscle (adapted from Decker et al.,^[10] with permission)

Exercise	Tubing force (N)*	Upper subscapularis EMG (%MVIC) [†]	Lower subscapularis EMG (%MVIC) [†]	Supraspinatus EMG (%MVIC) [†]	Infraspinatus EMG (%MVIC)†	Pectoralis major EMG (%MVIC) ⁺	Teres major EMG (%MVIC) ⁺	Latissimus dorsi EMG (%MVIC) ⁺
Standing forward scapular punch	260 ± 50	33±28 ^a	<20 ^{a,b,c,d}	46±24 ª	28±12 ^a	25±12 ^{a,b,c,d}	<20 ^a	<20 ^{a,d}
Standing IR at 90° abduction	270 ± 30	58±38 ª	<20 ^{a,b,c,d}	40±23 ^a	<20 ^a	<20 ^{a,b,c,d}	<20 ^a	<20 ^{a,d}
Standing IR at 45° abduction	260 ± 40	53 ± 40 ^a	26±19	33±25 ^{a,b}	<20 ^a	39±22 ^{a,d}	<20 ^a	<20 ^{a,d}
Standing IR at 0° abduction	270 ± 40	50 ± 23 ^a	40±27	<20 ^{a,b,d,e}	<20 ^a	51±24 ^{a,d}	<20 ^a	<20 ^{a,d}
Standing scapular dynamic hug	260 ± 50	58 ± 32 ^a	38 ± 20	62±31 ª	<20 ^a	46 ± 24 ^{a,d}	<20 ^a	<20 ^{a,d}
D2 diagonal pattern extension, horizontal adduction, IB (throwing acceleration)	270±30	60 ± 34 ª	39±26	54 ± 35 ª	<20 ^a	76±32	<20 ^a	21±12 ^a
Push-up plus	300 ± 90	122±22	46 ± 29	99±36	104±54	94 ± 27	47±26	49 ± 25

a Significantly less EMG amplitude compared with push-up plus (p<0.002).

b Significantly less EMG amplitude compared with standing scapular dynamic hug (p < 0.002).

c Significantly less EMG amplitude compared with standing internal rotation at 0° abduction (p<0.002).

d Significantly less EMG amplitude compared with D2 diagonal pattern extension, horizontal abduction, internal rotation (p<0.002).

e Significantly less EMG amplitude compared with standing forward scapular punch (p < 0.002).

IR = internal rotation. * There were no significant differences (p = 0.122) in tubing force among exercises; † there were significant differences (p < 0.001) in EMG amplitude among exercises.

Escamilla et al. – Cont'd

Table II. Mean (\pm SD) rotator cuff and deltoid electromyograph (EMG), normalized by a maximum voluntary isometric contraction (MVIC), during shoulder external rotation exercises using dumbbell resistance with intensity for each exercise normalized by a ten-repetition maximum. Data for muscles with EMG amplitude >45% of an MVIC are set in bold italic type, and these exercises are considered to be an effective challenge for that muscle (adapted from Reinold et al.,^[12] with permission)

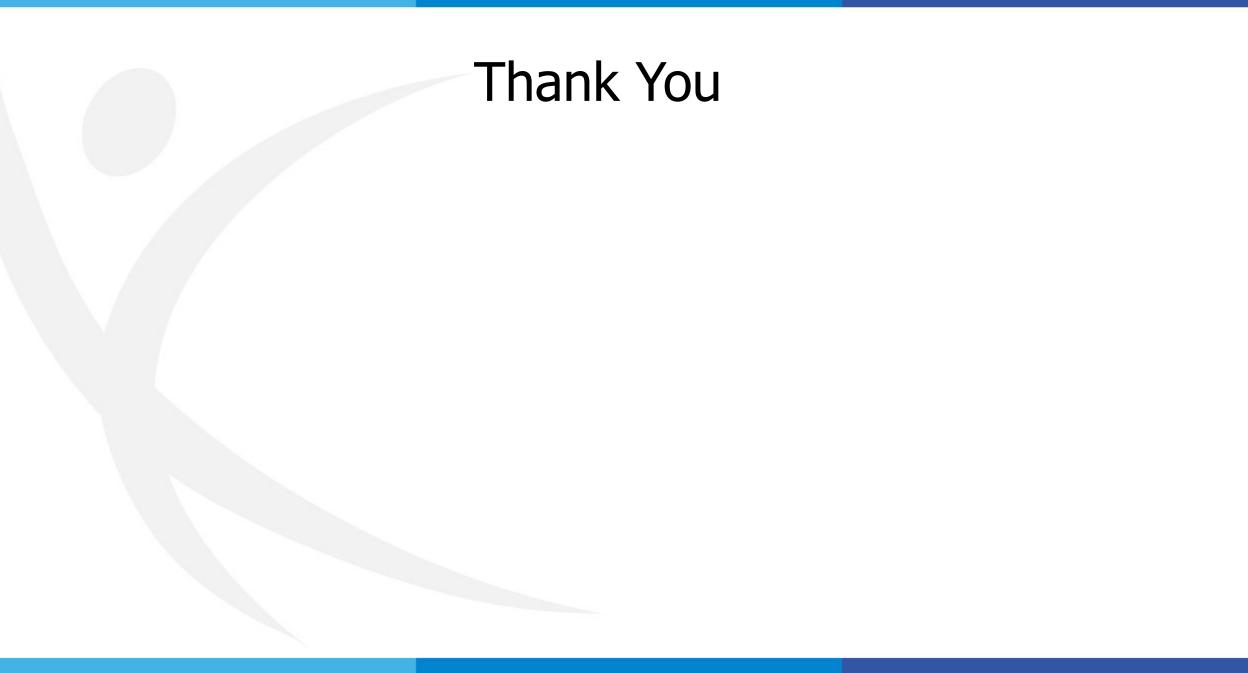
Exercise	Infraspinatus EMG (%MVIC)*	Teres minor EMG (%MVIC)*	Supraspinatus EMG (%MVIC)*	Middle deltoid EMG (%MVIC)*	Posterior deltoid EMG (%MVIC)*
Side-lying external rotation at 0° abduction	62±13	67±34	51±47 ^e	36±23 ^e	52±42 ^e
Standing ER in scapular plane at 45° abduction and 30° horizontal adduction	53±25	55±30	32±24 ^{c,e}	38±19 ^e	43±30 ^e
Prone ER at 90° abduction	50±23	48±27	68±33	49 ± 15 ^e	79±31
Standing ER at 90° abduction	50±25	39±13 ^a	57±32	<i>55±23</i> ^e	<i>59</i> ± <i>33</i> ^e
Standing ER at approximately 15° abduction with towel roll	50±14	46±41	$41\pm37^{c,e}$	$11\pm6^{c,d,e}$	31±27 ^{a,c,d,e}
Standing ER at 0° abduction without towel roll	40 ± 14^{a}	34±13 ^a	$41\pm 38^{c,e}$	$11\pm7^{c,d,e}$	$27\!\pm\!27^{a,c,d,e}$
Prone horizontal abduction at 100° abduction with ER (thumb up)	39±17 ^a	44±25	82±37	82±32	88±33

a Significantly less EMG amplitude compared with side-lying external rotation at 0° abduction (p<0.05).

- b Significantly less EMG amplitude compared with standing external rotation in scapular plane at 45° abduction and 30° horizontal adduction (p<0.05).</p>
- c Significantly less EMG amplitude compared with prone external rotation at 90° abduction (p < 0.05).
- d Significantly less EMG amplitude compared with standing external rotation at 90° abduction (p < 0.05).
- e Significantly less EMG amplitude compared with prone horizontal abduction at 100° abduction with external rotation (thumb up; p < 0.05).
- ER = external rotation. * There were significant differences (p < 0.01) in EMG amplitude among exercises.

Escamilla et al. – Cont'd

Table VIII. Mean (\pm SD) tubing force and glenohumeral and scapular electromyograph (EMG), normalized by a maximum voluntary isometric contraction (MVIC), during shoulder exercises using elastic tubing. Data for muscles with EMG amplitude >45% of an MVIC are set in bold italic type, and these exercises are considered to be an effective challenge for that muscle (adapted from Meyers et al.,^[14] with permission)


Exercise	Tubing force (N)	Pectoralis major EMG (%MVIC)	Latissimus dorsi EMG (%MVIC)	Biceps brachii EMG (%MVIC)	Triceps brachii EMG (%MVIC)	Lower trapezius EMG (%MVIC)	Rhomboids EMG (%MVIC)	Serratus anterior EMG (%MVIC)
D2 diagonal pattern extension, horizontal adduction, IR (throwing acceleration)	30±11	36±30	26±37	6±4	32±15	54±46	82±82	56±36
Eccentric arm control portion of D2 diagonal pattern flexion, abduction, ER (throwing deceleration)	13±8	22±28	35±48	11±7	22±16	63±42	86±49	48±32
Standing ER at 0° abduction	13±7	10±9	33 ± 39	7±4	22±17	48±25	66±49	18 ± 19
Standing ER at 90° abduction	12±8	34 ± 65	19±16	10±8	15±11	88±51	77 ± 53	66±39
Standing IR at 0° abduction	16±8	36 ± 31	34 ± 34	11±7	21±19	44±31	41±34	21 ± 14
Standing IR at 90° abduction	16±11	18±23	22±48	9±6	13±12	54±39	65±59	54±32
Standing extension from 90–0 $^{\circ}$	21 ± 11	22±37	64±53	10±27	67±45	53 ±40	66±48	30±21
Flexion above 120° with ER (thumb up)	26±12	19±13	33±34	22±15	22±12	49±35	52±54	67±37
Standing high scapular rows at 135° flexion	15±11	29±56	36±36	7±4	19±8	51±34	59±40	38±26
Standing mid scapular rows at 90° flexion	15±11	18±34	40±42	17±32	21±22	39±27	59±44	24±20
Standing low scapular rows at 45° flexion	12±8	17±32	35±26	21 ± 50	21±13	44±32	57 ± 38	22±14
Standing forward scapular punch	19±11	19±33	32 ± 35	12±9	27±28	39±32	52±43	67±45
ER = external rotation; IR = internal	rotation.							

Summary

- Following shoulder injury, we should aim to:
 - 1. Identify the individual demands of the sport
 - 2. Improve sport-specific biomechanics/techniques
 - 3. Increase rehabilitation intensity to challenge athletes at the limit of their capacity
 - 4. Build resilience: increase capacity to load from physiological and psychological perspectives
 - 5. Involve multidisciplinary team MD, PT, ATC, coaches, athlete

Question - Revisited

 How many participants feel comfortable treating shoulder instability, whether acute or chronic?

